Search results
Results from the WOW.Com Content Network
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
Figure 1: The red cylinder is the "free" body, the body of interest. Figure 2: Now the left half of the cylinder is the "free" body. Figure 1 shows, on the left, green, red, and blue widgets stacked on top of each other, and for some reason the red cylinder happens to be the body of interest.
The balance of nature, also known as ecological balance, is a theory that proposes that ecological systems are usually in a stable equilibrium or homeostasis, which is to say that a small change (the size of a particular population, for example) will be corrected by some negative feedback that will bring the parameter back to its original "point of balance" with the rest of the system.
At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s −1 and t 1/2 ~ 2 h. Thus, a free energy of activation of this magnitude corresponds to a typical reaction that proceeds to completion overnight at room ...
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]
The mass–action ratio, [1] [2] often denoted by , is the ratio of the product concentrations, p, to reactant concentrations, s. The concentrations may or may not be at equilibrium. The concentrations may or may not be at equilibrium.
This means that the force field lines around the particle's equilibrium position should all point inward, toward that position. If all of the surrounding field lines point toward the equilibrium point, then the divergence of the field at that point must be negative (i.e. that point acts as a sink). However, Gauss's law says that the divergence ...
In thermodynamics, a quasi-static process, also known as a quasi-equilibrium process (from Latin quasi, meaning ‘as if’ [1]), is a thermodynamic process that happens slowly enough for the system to remain in internal physical (but not necessarily chemical) thermodynamic equilibrium.