Search results
Results from the WOW.Com Content Network
Prefix name N/A deca hecto kilo mega giga tera peta exa zetta yotta ronna quetta; Prefix symbol da h k M G T P E Z Y R Q Factor 10 0: 10 1: 10 2: 10 3: 10 6: 10 9: 10 12: 10 15: 10 18: 10 21: 10 24: 10 27: 10 30
Prefix Symbol Factor Power tera T 1 000 000 000 000: 10 12: giga G 1 000 000 000: 10 9: mega M 1 000 000: 10 6: kilo k 1 000: 10 3: hecto h 100 10 2: deca da 10 10 1 (none) (none) 1 10 0: deci d 0.1 10 −1: centi c 0.01 10 −2: milli m 0.001 10 −3: micro μ 0.000 001: 10 −6: nano n 0.000 000 001: 10 −9: pico p 0.000 000 000 001: 10 −12
Prefix name N/A deca hecto kilo mega giga tera peta exa zetta yotta ronna quetta; Prefix symbol da h k M G T P E Z Y R Q Factor 10 0: 10 1: 10 2: 10 3: 10 6: 10 9: 10 ...
Prefix Base 10 Decimal Adoption [nb 1]Name Symbol quetta: Q: 10 30: 1 000 000 000 000 000 000 000 000 000 000: 2022 [1]: ronna: R: 10 27: 1 000 000 000 000 000 000 000 000 000: yotta: Y: 10 24: 1 000 000 000 000 000 000 000 000 ...
Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 [(prefix-number + 1) × 3] Examples: billion = 10 [(2 + 1) × 3] = 10 9; octillion = 10 [(8 + 1) × 3 ...
The two SI prefixes zetta- (10 21) and yotta- (10 24) have no corresponding IEC binary prefixes, though the obvious continuation would be zebi- (Zi = 2 70 = 1000 7 × 1.180 591 620 717 411 303 424) and yobi- (Yi = 2 80 = 1000 8 × 1.208 925 819 614 629 174 706 176)."
Show example template usage without expanding the template itself. {{tnull}} is similar without linking the template. Template parameters This template prefers inline formatting of parameters. Parameter Description Type Status Template name 1 Name of the template to link. Example Tlx Template required 1st parameter 2 no description String optional 2nd parameter 3 no description String optional ...
While the International System of Units (SI) defines multiples based on powers of ten (like k = 10 3, M = 10 6, etc.), a different definition is sometimes used in computing, based on powers of two (like k = 2 10, M = 2 20, etc.). This is due to binary nature of current computing systems, making powers of two the simplest to calculate.