enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    if L > 1 the series converges (this includes the case L = ∞) if L < 1 the series diverges; and if L = 1 the test is inconclusive. An alternative formulation of this test is as follows. Let { a n} be a series of real numbers. Then if b > 1 and K (a natural number) exist such that

  3. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  4. Molecular dynamics - Wikipedia

    en.wikipedia.org/wiki/Molecular_dynamics

    For example, consider simulating the growth of a copper film starting with a substrate containing 500 atoms and a deposition energy of 100 eV. In the real world, the 100 eV from the deposited atom would rapidly be transported through and shared among a large number of atoms ( 10 10 {\displaystyle 10^{10}} or more) with no big change in temperature.

  5. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    The model assumes collisions with M ≫ m where M is the test particle's mass and m the mass of one of the individual particles composing the fluid. It is assumed that the particle collisions are confined to one dimension and that it is equally probable for the test particle to be hit from the left as from the right.

  6. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.

  7. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    Once such a sequence is found, a similar question can be asked with f(n) taking the role of 1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series. Using the integral test for convergence, one can show (see below) that, for every natural number k, the series

  8. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  9. Crystallographic defect - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_defect

    A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell parameters in crystals, exhibit a periodic crystal structure , but this is usually imperfect.