Search results
Results from the WOW.Com Content Network
The principal difference between structural genomics and traditional structural prediction is that structural genomics attempts to determine the structure of every protein encoded by the genome, rather than focusing on one particular protein. With full-genome sequences available, structure prediction can be done more quickly through a ...
In comparative genomics, synteny is the preserved order of genes on chromosomes of related species indicating their descent from a common ancestor.Synteny provides a framework in which the conservation of homologous genes and gene order is identified between genomes of different species. [9]
Researchers have investigated the relationship between race and genetics as part of efforts to understand how biology may or may not contribute to human racial categorization. Today, the consensus among scientists is that race is a social construct, and that using it as a proxy for genetic differences among populations is misleading. [1] [2]
Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders.Medical genetics differs from human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care.
Genomic deoxyribonucleic acid (abbreviated as gDNA [1]) is chromosomal DNA, in contrast to extra-chromosomal DNAs like plasmids.Most organisms have the same genomic DNA in every cell; however, only certain genes are active in each cell to allow for cell function and differentiation within the body.
The principal difference between structural genomics and traditional structural prediction is that structural genomics attempts to determine the structure of every protein encoded by the genome, rather than focusing on one particular protein. With full-genome sequences available, structure prediction can be done more quickly through a ...
This is a difference between what is seen on the surface (the traits of an organism, called its phenotype) and the genes within the organism (its genotype). In this example, the allele for brown can be called "B" and the allele for red "b".
Functional genomics is a field of molecular biology that attempts to describe gene (and protein) functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects (such as genome sequencing projects and RNA sequencing ).