enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  3. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    In machine learning (ML), feature learning or representation learning [2] is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a ...

  4. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    Extracting or selecting features is a combination of art and science; developing systems to do so is known as feature engineering. It requires the experimentation of multiple possibilities and the combination of automated techniques with the intuition and knowledge of the domain expert .

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  6. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  7. Feature recognition - Wikipedia

    en.wikipedia.org/wiki/Feature_recognition

    The term "feature" implies different meanings in different engineering disciplines. This has resulted in many ambiguous definitions for feature. A feature, in computer-aided design (CAD), usually refers to a region of a part with some interesting geometric or topological properties. [1] These are more precisely called form features.

  8. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Techniques to transform the raw feature vectors (feature extraction) are sometimes used prior to application of the pattern-matching algorithm. Feature extraction algorithms attempt to reduce a large-dimensionality feature vector into a smaller-dimensionality vector that is easier to work with and encodes less redundancy, using mathematical ...

  9. Reverse engineering - Wikipedia

    en.wikipedia.org/wiki/Reverse_engineering

    The Tupolev Tu-4, a Soviet bomber built by reverse engineering captured Boeing B-29 Superfortresses. Reverse engineering (also known as backwards engineering or back engineering) is a process or method through which one attempts to understand through deductive reasoning how a previously made device, process, system, or piece of software accomplishes a task with very little (if any) insight ...