Search results
Results from the WOW.Com Content Network
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
Global study of residual Bouguer anomaly data indicates that crustal thickness of Mars varies from 5.8 km to 102 km. [5] Two major peaks at 32 km and 58 km are identified from an equal-area histogram of crustal thickness. [5] These two peaks are linked to the crustal dichotomy of Mars. [5]
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; [1] the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation .
The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5] The Parker Solar Probe (via Venus) plans a maximum C 3 of 154 km 2 /s 2. [6] Typical ballistic C 3 (km 2 /s 2) to get from Earth to various planets: Mars 8-16, [7] Jupiter 80, Saturn or Uranus 147. [8] To Pluto (with its orbital inclination) needs about 160–164 km 2 /s 2. [9]
Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.
Deimos (/ ˈ d aɪ m ə s /; systematic designation: Mars II) [11] is the smaller and outer of the two natural satellites of Mars, the other being Phobos. Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. [5] Deimos is 23,460 km (14,580 mi) from Mars, much farther than Mars's other moon, Phobos. [12]