Search results
Results from the WOW.Com Content Network
The zirconium-catalyzed asymmetric carbo-alumination reaction (or ZACA reaction) was developed by Nobel laureate Ei-ichi Negishi. [1] It facilitates the chiral functionalization of alkenes using organoaluminium compounds under the influence of chiral bis-indenylzirconium catalysts (e.g. bearing chiral terpene residues, [2] as in (+)- or (−)-bis[(1-neomenthyl)indenyl]zirconium dichloride [3 ...
The progress of the reaction can be estimated by disappearance of the characteristic yellow color of the ketene, by loss of the band at about 2100 cm −1 in the infrared spectrum, or by 1 H NMR spectroscopy. Ketene, monoalkylketenes, and dimethylketene are usually allowed to react at or below room temperature, whereas the higher molecular ...
The introduction of chirality into nonchiral reactants through usage of chiral catalysts is an important concept in organic synthesis. This reaction was developed principally by K. Barry Sharpless building on the already known racemic Upjohn dihydroxylation, for which he was awarded a share of the 2001 Nobel Prize in Chemistry.
The oxidation of alkenes has attracted much attention. Asymmetric epoxidation is often feasible. [4] One named reaction is the Jacobsen epoxidation, which uses manganese-salen complex as a chiral catalyst and NaOCl as the oxidant. The Sharpless epoxidation using chiral N-heterocyclic ligands and osmium tetroxide. Instead of asymmetric ...
Because of the large size of the α-pinenyl substituents, diisopinocampheylborane only hydroborates unhindered alkenes. These reactions proceed with high enantioselectivity. 2-Butene, 2-pentene, 3-hexene are converted to the respective chiral alcohols in high ee's. [4] Norbornene under the same conditions gave an 83% ee.
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
Chiral auxiliaries, [26] chiral boron enolates, [27] and asymmetric phase transfer catalysis [28] have been used successfully to effect asymmetric induction in the Darzens reaction. (12) Diastereoselective epoxidations of chiral, non-racemic alkenes suffer from the limitation that removal of the auxiliary without disturbing the epoxide is often ...
The Shi epoxidation is a chemical reaction described as the asymmetric epoxidation of alkenes with oxone (potassium peroxymonosulfate) and a fructose-derived catalyst (1). This reaction is thought to proceed via a dioxirane intermediate, generated from the catalyst ketone by oxone (potassium peroxymonosulfate). The addition of the sulfate group ...