Search results
Results from the WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 8 February 2025. DNA molecule containing genetic material of a cell This article is about the DNA molecule. For the genetic algorithm, see Chromosome (genetic algorithm). Chromosome (10 7 - 10 10 bp) DNA Gene (10 3 - 10 6 bp) Function A chromosome and its packaged long strand of DNA unraveled. The DNA's ...
Within chromosomes, DNA is held in complexes with structural proteins. These proteins organize the DNA into a compact structure called chromatin. In eukaryotes, this structure involves DNA binding to a complex of small basic proteins called histones, while in prokaryotes multiple types of proteins are involved.
Each chromosome consists enormously long linear DNA molecule associated with proteins that fold and pack the fine thread of DNA into a more compact structure. [2] Commonly, many people think the structure of a chromosome is in an "X" shape. But this is only present when the cell divides.
The human genome is a complete set of nucleic acid sequences for humans, encoded as the DNA within each of the 23 distinct chromosomes in the cell nucleus. A small DNA molecule is found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. [1]
The overall structure of the chromatin network further depends on the stage of the cell cycle. During interphase, the chromatin is structurally loose to allow access to RNA and DNA polymerases that transcribe and replicate the DNA. The local structure of chromatin during interphase depends on the specific genes present in the DNA.
The extreme length (a chromosome may contain a 10 cm long DNA strand), relative rigidity and helical structure of DNA has led to the evolution of histones and of enzymes such as topoisomerases and helicases to manage a cell's DNA. The properties of DNA are closely related to its molecular structure and sequence, particularly the weakness of the ...
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...