Search results
Results from the WOW.Com Content Network
The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
The three dimensions of space afford 14 distinct Bravais lattices describing the translational symmetry. All crystalline materials recognized today, not including quasicrystals, fit in one of these arrangements. The fourteen three-dimensional lattices, classified by lattice system, are shown above.
The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:
Crystalline materials (mainly metals and alloys, but also stoichiometric salts and other materials) are made up of solid regions of ordered matter (atoms placed in one of a number of ordered formations called Bravais lattices). These regions are known as crystals. A perfect crystal is a crystal that contains no point, line, or planar defects. [1]
Bravais published a memoir about crystallography in 1847. A co-founder of the Société météorologique de France, he joined the French Academy of Sciences in 1854. Bravais also worked on the theory of observational errors, a field in which he is especially known for his 1846 paper "Mathematical analysis on the probability of errors of a point".
A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups of a configuration in space) are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices.
The black-white Bravais lattices characterize the translational symmetry of the structure like the typical Bravais lattices, but also contain additional symmetry elements. For black-white Bravais lattices, the number of black and white sites is always equal. [ 24 ]
Figure 1 – The HCP lattice (left) and the FCC lattice (right). The outline of each respective Bravais lattice is shown in red. The letters indicate which layers are the same. There are two "A" layers in the HCP matrix, where all the spheres are in the same position. All three layers in the FCC stack are different.