Search results
Results from the WOW.Com Content Network
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]
Subtraction is the inverse of addition. [1] The function whose value for any real or complex argument is the additive inverse of that argument. For example, if x = 3, then −x = −3, but if x = −3, then −x = +3. Similarly, −(−x) = x. A prefix of a numeric constant. When it is placed immediately before an unsigned number, the ...
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
If a single term x appears in a sum n times, then the sum is the product of n and x. If n is not a natural number, the product may still make sense; for example, multiplication by −1 yields the additive inverse of a number. A circular slide rule
The representation ring's additive group is the free abelian group whose basis are the indecomposable modules and whose addition corresponds to the direct sum. Expressing a module in terms of the basis is finding an indecomposable decomposition of the module. The multiplication is the tensor product.
Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence; Additive inverse, the inverse of a number that, when added to the original number, yields zero; Compositional inverse, a function that "reverses" another function; Inverse element
Under addition, a ring is an abelian group, which means that addition is commutative and associative; it has an identity, called the additive identity, and denoted 0; and every element x has an inverse, called its additive inverse and denoted −x. Because of commutativity, the concepts of left and right inverses are meaningless since they do ...
Some authors use the term "idempotent ring" for this type of ring. In such a ring, multiplication is commutative and every element is its own additive inverse. A ring is semisimple if and only if every right (or every left) ideal is generated by an idempotent.