Search results
Results from the WOW.Com Content Network
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
[2] [3] Rational fractions are also known as rational expressions. A rational fraction () is called proper if < (), and improper otherwise. For example, the rational fraction is proper, and the rational fractions + + + and + + are improper. Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant ...
A simple fraction (also known as a common fraction or vulgar fraction) [n 1] is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator ( b ) cannot be zero.
العربية; Azərbaycanca; বাংলা; Башҡортса; Беларуская (тарашкевіца) Български; Boarisch; Bosanski; Català
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Rational expression may refer to: A mathematical expression that may be rewritten to a rational fraction , an algebraic fraction such that both the numerator and the denominator are polynomials. A regular expression , also known as rational expression, used in formal language theory (computer science)
In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also ...