Search results
Results from the WOW.Com Content Network
In statistical theory, a U-statistic is a class of statistics defined as the average over the application of a given function applied to all tuples of a fixed size. The letter "U" stands for unbiased. [citation needed] In elementary statistics, U-statistics arise naturally in producing minimum-variance unbiased estimators.
In general, the subscript 0 indicates a value taken from the null hypothesis, H 0, which should be used as much as possible in constructing its test statistic. ... Definitions of other symbols: Definitions of other symbols:
The α-level upper critical value of a probability distribution is the value exceeded with probability , that is, the value such that () =, where is the cumulative distribution function. There are standard notations for the upper critical values of some commonly used distributions in statistics:
The sum of two independent uniform distributions U 1 (a,b)+U 2 (c,d) yields a trapezoidal distribution, symmetric about its mean, on the support [a+c,b+d]. The plateau has width equals to the absolute different of the width of U 1 and U 2. The width of the sloped parts corresponds to the width of the narrowest uniform distribution.
The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
the population mean or expected value in probability and statistics; a measure in measure theory; micro-, an SI prefix denoting 10 −6 (one millionth) Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.
Bowley's measure of skewness is γ(u) evaluated at u = 3/4 while Kelly's measure of skewness is γ(u) evaluated at u = 9/10. This definition leads to a corresponding overall measure of skewness [23] defined as the supremum of this over the range 1/2 ≤ u < 1. Another measure can be obtained by integrating the numerator and denominator of this ...