enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Template:Polyhedron templates - Wikipedia

    en.wikipedia.org/wiki/Template:Polyhedron_templates

    Download as PDF; Printable version; In other projects ... This template is intended to provide consistent and easy links between Polyhedron database related templates ...

  3. Category:Polyhedron templates - Wikipedia

    en.wikipedia.org/wiki/Category:Polyhedron_templates

    [[Category:Polyhedron templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Polyhedron templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.

  4. Polyhedron model - Wikipedia

    en.wikipedia.org/wiki/Polyhedron_model

    One way is to copy templates from a polyhedron-making book, such as Magnus Wenninger's Polyhedron Models, 1974 (ISBN 0-521-09859-9). A second way is drawing faces on paper or with computer-aided design software and then drawing on them the polyhedron's edges. The exposed nets of the faces are then traced or printed on template material.

  5. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  7. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    The icosidodecahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] The polygonal faces that meet for every vertex are two equilateral triangles and two regular pentagons, and the vertex figure of an icosidodecahedron is {{nowrap|(3 ...

  8. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    Colored regions are cross-sections of the solid cone. Their boundaries (in black) are the named plane sections. A cross section of a polyhedron is a polygon. The conic sections – circles, ellipses, parabolas, and hyperbolas – are plane sections of a cone with the cutting planes at various different angles, as seen in the diagram at left.

  9. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.