Search results
Results from the WOW.Com Content Network
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p -value as the size of one tail. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.
The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1][2][3] It is used for comparing two or more independent samples of equal or different sample sizes.
This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1] The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance.
All terms require hypothesis tests. The proliferation of interaction terms increases the risk that some hypothesis test will produce a false positive by chance. Fortunately, experience says that high order interactions are rare. [41] [verification needed] The ability to detect interactions is a major advantage of multiple factor ANOVA. Testing ...
A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p -value computed from the test statistic. Roughly 100 specialized statistical tests have been defined. [1][2]
The term " Z -test" is often used to refer specifically to the one-sample location test comparing the mean of a set of measurements to a given constant when the sample variance is known. For example, if the observed data X1, ..., Xn are (i) independent, (ii) have a common mean μ, and (iii) have a common variance σ 2, then the sample average X ...
A two-tailed test may still be used but it will be less powerful than a one-tailed test, because the rejection region for a one-tailed test is concentrated on one end of the null distribution and is twice the size (5% vs. 2.5%) of each rejection region for a two-tailed test. As a result, the null hypothesis can be rejected with a less extreme ...
Dunnett's test. In statistics, Dunnett's test is a multiple comparison procedure [1] developed by Canadian statistician Charles Dunnett [2] to compare each of a number of treatments with a single control. [3][4] Multiple comparisons to a control are also referred to as many-to-one comparisons.