enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Beam emittance - Wikipedia

    en.wikipedia.org/wiki/Beam_emittance

    One of the most fundamental methods of measuring beam emittance is the quadrupole scan method. The emittance of the beam for a particular plane of interest (i.e., horizontal or vertical) can be obtained by varying the field strength of a quadrupole (or quadrupoles) upstream of a monitor (i.e., a wire or a screen). [4]

  3. Courant–Snyder parameters - Wikipedia

    en.wikipedia.org/wiki/Courant–Snyder_parameters

    One dimensional position-momentum plot, showing the beam ellipse described in terms of the Courant–Snyder parameters. In accelerator physics, the Courant–Snyder parameters (frequently referred to as Twiss parameters or CS parameters) are a set of quantities used to describe the distribution of positions and velocities of the particles in a beam. [1]

  4. Intrabeam scattering - Wikipedia

    en.wikipedia.org/wiki/Intrabeam_Scattering

    Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime.

  5. Swiss Light Source - Wikipedia

    en.wikipedia.org/wiki/Swiss_Light_Source

    Finally 24 skew quadrupole magnets are adjusted to correct any torsion of the beam and to minimize the vertical emittance: a world record low value of 3 pm rad has been achieved in 2008. [ 2 ] The SLS has achieved a photon beam stability of 1 micrometre: the ring is operated in top-up mode, i.e. the stored current of 400 mA is kept constant to ...

  6. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  7. Beam divergence - Wikipedia

    en.wikipedia.org/wiki/Beam_divergence

    Beam divergence is often used to characterize electromagnetic beams in the optical regime, for cases in which the aperture from which the beam emerges is very large with respect to the wavelength. However, it is also used in the radio frequency (RF) band for cases in which the antenna is very large relative to a wavelength.

  8. Complex beam parameter - Wikipedia

    en.wikipedia.org/wiki/Complex_beam_parameter

    In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...

  9. M squared - Wikipedia

    en.wikipedia.org/wiki/M_squared

    The diameter of the multimode beam is then M times that of the embedded Gaussian beam everywhere, and the divergence is M times greater, but the wavefront curvature is the same. The multimode beam has M 2 times the beam area but 1/M 2 less beam intensity than the embedded beam. This holds true for any given optical system, and thus the minimum ...