enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite sphere packing - Wikipedia

    en.wikipedia.org/wiki/Finite_sphere_packing

    In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth .

  3. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.

  4. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...

  5. Soap bubble - Wikipedia

    en.wikipedia.org/wiki/Soap_bubble

    A soap bubble (commonly referred to as simply a bubble) is an extremely thin film of soap or detergent and water enclosing air that forms a hollow sphere with an iridescent surface. Soap bubbles usually last for only a few seconds before bursting, either on their own or on contact with another object.

  6. Sphere packing in a cylinder - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing_in_a_cylinder

    Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures .

  7. Kepler conjecture - Wikipedia

    en.wikipedia.org/wiki/Kepler_conjecture

    However, the optimal sphere packing question in dimensions other than 1, 2, 3, 8, and 24 is still open. Ulam's packing conjecture It is unknown whether there is a convex solid whose optimal packing density is lower than that of the sphere.

  8. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  9. Equivalent spherical diameter - Wikipedia

    en.wikipedia.org/wiki/Equivalent_spherical_diameter

    However, real-life particles are likely to have irregular shapes and surface irregularities, and their size cannot be fully characterized by a single parameter. The concept of equivalent spherical diameter has been introduced in the field of particle size analysis to enable the representation of the particle size distribution in a simplified ...