Search results
Results from the WOW.Com Content Network
The probability that n customers are in the queueing system, the average number of customers in the queueing system, the average number of customers in the waiting line, the average time spent by a customer in the total queuing system, the average time spent by a customer in the waiting line, and finally the probability that the server is busy ...
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed .
In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.
In queueing theory, a discipline within the mathematical theory of probability, the flow-equivalent server method (also known as flow-equivalent aggregation technique, [1] Norton's theorem for queueing networks or the Chandy–Herzog–Woo method [2]) is a divide-and-conquer method to solve product form queueing networks inspired by Norton's theorem for electrical circuits. [3]
In queueing theory, a discipline within the mathematical theory of probability, the backpressure routing algorithm is a method for directing traffic around a queueing network that achieves maximum network throughput, [1] which is established using concepts of Lyapunov drift.
An M/M/1 queueing node. In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation.
In queueing theory, a discipline within the mathematical theory of probability, mean value analysis (MVA) is a recursive technique for computing expected queue lengths, waiting time at queueing nodes and throughput in equilibrium for a closed separable system of queues.
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. [1]