Search results
Results from the WOW.Com Content Network
A trough is the opposite of a crest, so the minimum or lowest point of the wave. When the crests and troughs of two sine waves of equal amplitude and frequency intersect or collide, while being in phase with each other, the result is called constructive interference and the magnitudes double (above and below the line).
Depending on context, wave height may be defined in different ways: For a sine wave, the wave height H is twice the amplitude (i.e., the peak-to-peak amplitude): [1] =.; For a periodic wave, it is simply the difference between the maximum and minimum of the surface elevation z = η(x – c p t): [1] = {()} {()}, with c p the phase speed (or propagation speed) of the wave.
Significant wave height H 1/3, or H s or H sig, as determined in the time domain, directly from the time series of the surface elevation, is defined as the average height of that one-third of the N measured waves having the greatest heights: [5] / = = where H m represents the individual wave heights, sorted into descending order of height as m increases from 1 to N.
The main cause of sound attenuation in fresh water, and at high frequency in sea water (above 100 kHz) is viscosity. Important additional contributions at lower frequency in seawater are associated with the ionic relaxation of boric acid (up to c. 10 kHz) [ 7 ] and magnesium sulfate (c. 10 kHz-100 kHz).
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
The spectrum of ice is similar to that of liquid water, with peak maxima at 3400 cm −1 (2.941 μm), 3220 cm −1 (3.105 μm) and 1620 cm −1 (6.17 μm) [14] In both liquid water and ice clusters, low-frequency vibrations occur, which involve the stretching (TS) or bending (TB) of intermolecular hydrogen bonds (O–H•••O).
The surface tide propagates as a wave in which water parcels in the whole water column oscillate in the same direction at a given phase (i.e., in the trough or at the crest, Fig. 1, top). This means that while the form of the surface wave itself may propagate across the surface of the water, the fluid particles themselves are restricted to a ...
Using another normalization for the same frequency dispersion relation, the figure on the right shows that for a fixed wavelength λ the phase speed c p increases with increasing water depth. [1] Until, in deep water with water depth h larger than half the wavelength λ (so for h/λ > 0.5), the phase velocity c p is independent of the water ...