enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...

  3. Category:Pi algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Pi_algorithms

    This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.

  4. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.

  5. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Borwein's algorithm was devised by Jonathan and Peter Borwein to calculate the value of /. This and other algorithms can be found in the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity .

  6. Communicating sequential processes - Wikipedia

    en.wikipedia.org/wiki/Communicating_sequential...

    In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.

  7. Simon Plouffe - Wikipedia

    en.wikipedia.org/wiki/Simon_Plouffe

    Simon Plouffe (born June 11, 1956) is a French Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995. [1] [2] [3] His other 2022 formula allows extracting the nth digit of π in decimal. [4] He was born in Saint-Jovite, Quebec.

  8. π-calculus - Wikipedia

    en.wikipedia.org/wiki/Π-calculus

    The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).

  9. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Super PI by Kanada Laboratory [101] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 minutes on a Pentium 90 MHz. Super PI version 1.9 is available from Super PI 1.9 page.