enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    The Decimal class in the standard library module decimal has user definable precision and limited mathematical operations (exponentiation, square root, etc. but no trigonometric functions). The Fraction class in the module fractions implements rational numbers. More extensive arbitrary precision floating point arithmetic is available with the ...

  4. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    [5] [6] Another is in situations where artificial limits and overflows would be inappropriate. It is also useful for checking the results of fixed-precision calculations, and for determining optimal or near-optimal values for coefficients needed in formulae, for example the 1 3 {\textstyle {\sqrt {\frac {1}{3}}}} that appears in Gaussian ...

  5. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    C# has a built-in data type decimal consisting of 128 bits resulting in 28–29 significant digits. It has an approximate range of ±1.0 × 10 −28 to ±7.9228 × 10 28. [1] Starting with Python 2.4, Python's standard library includes a Decimal class in the module decimal. [2] Ruby's standard library includes a BigDecimal class in the module ...

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.

  8. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    In IEEE 754 parlance, there are 10 bits of significand, but there are 11 bits of significand precision (log 10 (2 11) ≈ 3.311 decimal digits, or 4 digits ± slightly less than 5 units in the last place).

  9. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.