Search results
Results from the WOW.Com Content Network
Car Evaluation Data Set Car properties and their overall acceptability. Six categorical features given. 1728 Text Classification 1997 [13] [14] M. Bohanec YouTube Comedy Slam Preference Dataset User vote data for pairs of videos shown on YouTube. Users voted on funnier videos. Video metadata given. 1,138,562 Text Classification 2012 [15] [16 ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Code cleanup can also refer to the removal of all computer programming from source code, or the act of removing temporary files after a program has finished executing. For instance, in a web browser such as Chrome browser or Maxthon , code must be written in order to clean up files such as cookies and storage. [ 6 ]
Planning a program evaluation can be broken up into four parts: focusing the evaluation, collecting the information, using the information, and managing the evaluation. [28] Program evaluation involves reflecting on questions about evaluation purpose, what questions are necessary to ask, and what will be done with information gathered.
In programming language theory, lazy evaluation, or call-by-need, [1] is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (by the use of sharing). [2] [3] The benefits of lazy evaluation include:
Data cleansing or data cleaning is the process of identifying and correcting (or removing) corrupt, inaccurate, or irrelevant records from a dataset, table, or database. It involves detecting incomplete, incorrect, or inaccurate parts of the data and then replacing, modifying, or deleting the affected data. [ 1 ]
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...