enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, ... for the outer product of two ... The generalization of the dot product formula to Riemannian manifolds is a defining property ...

  4. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.

  5. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    In a geometric algebra for which the square of any nonzero vector is positive, the inner product of two vectors can be identified with the dot product of standard vector algebra. The exterior product of two vectors can be identified with the signed area enclosed by a parallelogram the sides of which are the vectors.

  6. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The exterior algebra is named after Hermann Grassmann, [3] and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside" . The wedge product of k {\displaystyle k} vectors v 1 ∧ v 2 ∧ ⋯ ∧ v k {\displaystyle v_{1}\wedge v_{2}\wedge \dots \wedge v_{k}} is called a blade of degree k ...

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. 2 Stocks to Buy Before 2025 - AOL

    www.aol.com/2-stocks-buy-2025-003155229.html

    Apple and Amazon are two Mag 7 stocks with room to run in 2025 Retiring early is possible, and may be easier than you think. Click here now to see if you’re ahead, or behind .

  9. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.