enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    3. Now transform this vector back to the scale of the actual covariates, using the selected PCA loadings (the eigenvectors corresponding to the selected principal components) to get the final PCR estimator (with dimension equal to the total number of covariates) for estimating the regression coefficients characterizing the original model.

  3. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  4. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    The SUR model can be viewed as either the simplification of the general linear model where certain coefficients in matrix are restricted to be equal to zero, or as the generalization of the general linear model where the regressors on the right-hand-side are allowed to be different in each equation.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Its elements are known as effects or regression coefficients (although the latter term is sometimes reserved for the estimated effects). In simple linear regression, p=1, and the coefficient is known as regression slope. Statistical estimation and inference in linear regression focuses on β.

  6. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]

  7. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  8. Three parties combine to keep poll-topping far-right at bay ...

    www.aol.com/news/three-parties-combine-keep...

    BERLIN (Reuters) -Three parties in the eastern German state of Thuringia joined forces on Thursday to keep the poll-topping Alternative for Germany out of power, electing as state premier a ...

  9. Nash–Sutcliffe model efficiency coefficient - Wikipedia

    en.wikipedia.org/wiki/Nash–Sutcliffe_model...

    The Nash–Sutcliffe coefficient masks important behaviors that if re-cast can aid in the interpretation of the different sources of model behavior in terms of bias, random, and other components. [11] The alternate Kling–Gupta efficiency is intended to improve upon NSE by incorporating bias and variance terms. [12]