Search results
Results from the WOW.Com Content Network
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every Mersenne prime M p = 2 p − 1 has a corresponding perfect number M p × (M p +1)/2 = 2 p − 1 × (2 p − 1). For example, the Mersenne prime 2 2 − 1 = 3 leads to the corresponding perfect number 2 2 − ...
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.
This is an accepted version of this page This is the latest accepted revision, reviewed on 7 January 2025. Practice and study of secure communication techniques "Secret code" redirects here. For the Aya Kamiki album, see Secret Code. "Cryptology" redirects here. For the David S. Ware album, see Cryptology (album). This article needs additional citations for verification. Please help improve ...
In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k , a number n is called k -perfect (or k -fold perfect) if the sum of all positive divisors of n (the divisor function , σ ( n )) is equal to kn ; a number is thus perfect if and ...
Post-quantum cryptography (PQC), sometimes referred to as quantum-proof, quantum-safe, or quantum-resistant, is the development of cryptographic algorithms (usually public-key algorithms) that are currently thought to be secure against a cryptanalytic attack by a quantum computer.
Group-based cryptography is a use of groups to construct cryptographic primitives. A group is a very general algebraic object and most cryptographic schemes use groups in some way. A group is a very general algebraic object and most cryptographic schemes use groups in some way.
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...