Search results
Results from the WOW.Com Content Network
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by atom or group. [1] [2] [3] It can be represented generically as: + +
Another example of a double displacement reaction is the reaction of lead(II) nitrate with potassium iodide to form lead(II) iodide and potassium nitrate: + + Forward and backward reactions According to Le Chatelier's Principle , reactions may proceed in the forward or reverse direction until they end or reach equilibrium .
Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.
A neutralization reaction is a type of double replacement reaction. A neutralization reaction occurs when an acid reacts with an equal amount of a base. This reaction usually produces a salt. One example, hydrochloric acid reacts with disodium iron tetracarbonyl to produce the iron dihydride: 2 HCl + Na 2 Fe(CO) 4 → 2 NaCl + H 2 Fe(CO) 4
Schematic illustration of independent binary collisions between atoms. When the initial recoil/ion mass is low, and the material where the cascade occurs has a low density (i.e. the recoil-material combination has a low stopping power), the collisions between the initial recoil and sample atoms occur rarely, and can be understood well as a sequence of independent binary collisions between atoms.
The Darzens reaction (also known as the Darzens condensation or glycidic ester condensation) is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester". [1] [2] [3] This reaction was discovered by the organic chemist Auguste Georges Darzens in 1904 ...
A displacement field is a vector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. The distance between any two particles changes if and only if deformation has occurred. If displacement occurs without deformation, then it is a rigid-body displacement.
The intermolecular mechanism is partially illustrated by the side products found in the following example: Jacobsen rearrangement. Furthermore, the reaction is limited to benzene rings with at least four substituents (alkyl and/or halogen groups). The sulfo group is easily removed, so the Jacobsen rearrangement can also be considered as a ...