Search results
Results from the WOW.Com Content Network
This is a statement in the metalanguage, not the object language. The notation a ≡ b {\displaystyle a\equiv b} may occasionally be seen in physics, meaning the same as a := b {\displaystyle a:=b} .
In formal languages, truth functions are represented by unambiguous symbols.This allows logical statements to not be understood in an ambiguous way. These symbols are called logical connectives, logical operators, propositional operators, or, in classical logic, truth-functional connectives.
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.
C mathematical operations are a group of functions in the standard library of the C programming language implementing basic mathematical functions. [1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions.
In C (and some other languages descended from C), double negation (!!x) is used as an idiom to convert x to a canonical Boolean, ie. an integer with a value of either 0 or 1 and no other. Although any integer other than 0 is logically true in C and 1 is not special in this regard, it is sometimes important to ensure that a canonical value is ...
Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).
In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.
Mathematical logic, also called 'logistic', 'symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories elaborated in the course of the nineteenth century with the aid of an artificial notation and a rigorously deductive method. [5]