enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kelvin equation - Wikipedia

    en.wikipedia.org/wiki/Kelvin_equation

    The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.

  3. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    If the pressure is increased by the addition of an inert gas, then neither the composition at equilibrium nor the equilibrium constant are appreciably affected (because the partial pressures remain constant, assuming an ideal-gas behaviour of all gases involved). However, the composition at equilibrium will depend appreciably on pressure when:

  4. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p.

  5. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    At the meniscus interface, due to the surface tension, there is a pressure difference of =, where is the pressure on the convex side; and is known as Laplace pressure. If the tube has a circular section of radius r 0 {\displaystyle r_{0}} , and the meniscus has a spherical shape, the radius of curvature is r = r 0 / cos ⁡ θ {\displaystyle r ...

  6. Paschen's law - Wikipedia

    en.wikipedia.org/wiki/Paschen's_law

    With a constant pressure, the voltage needed to cause an arc reduced as the gap size was reduced but only to a point. As the gap was reduced further, the voltage required to cause an arc began to rise and again exceeded its original value. For a given gas, the voltage is a function only of the product of the pressure and gap length.

  7. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    Another way to find the capillary length is using different pressure points inside a sessile droplet, with each point having a radius of curvature, and equate them to the Laplace pressure equation. This time the equation is solved for the height of the meniscus level which again can be used to give the capillary length.

  8. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.

  9. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.