Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
In two-valued logic, there are sixteen possible truth functions, also called Boolean functions, of two inputs P and Q. Any of these functions corresponds to a truth table of a certain logical connective in classical logic, including several degenerate cases such as a function not depending on one or both of its arguments. Truth and falsehood ...
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise. may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).
The idea behind the logic alphabet is to first represent the sixteen binary truth functions in the form of a square matrix rather than the more familiar tabular format seen in the table above, and then to assign a letter shape to each of these matrices. Letter shapes are derived from the distribution of Ts in the matrix.
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.
This set of two values is also called the Boolean domain. Corresponding semantics of logical connectives are truth functions, whose values are expressed in the form of truth tables. Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false.
In Boolean logic, logical NOR, [1] non-disjunction, or joint denial [1] is a truth-functional operator which produces a result that is the negation of logical or.That is, a sentence of the form (p NOR q) is true precisely when neither p nor q is true—i.e. when both p and q are false.