enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_model

    One of the popular examples in computer science is the mathematical models of various machines, an example is the deterministic finite automaton (DFA) which is defined as an abstract mathematical concept, but due to the deterministic nature of a DFA, it is implementable in hardware and software for solving various specific problems. For example ...

  3. Stochastic dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Stochastic_dynamic_programming

    A gambler has $2, she is allowed to play a game of chance 4 times and her goal is to maximize her probability of ending up with a least $6. If the gambler bets $ on a play of the game, then with probability 0.4 she wins the game, recoup the initial bet, and she increases her capital position by $; with probability 0.6, she loses the bet amount $; all plays are pairwise independent.

  4. Automated planning and scheduling - Wikipedia

    en.wikipedia.org/wiki/Automated_planning_and...

    Probabilistic planning can be solved with iterative methods such as value iteration and policy iteration, when the state space is sufficiently small. With partial observability, probabilistic planning is similarly solved with iterative methods, but using a representation of the value functions defined for the space of beliefs instead of states.

  5. Influence diagram - Wikipedia

    en.wikipedia.org/wiki/Influence_diagram

    The decision-maker is usually better off (definitely no worse off, on average) to move from scenario 3 to scenario 2 through the acquisition of new information. The most they should be willing to pay for such move is called the value of information on Weather Forecast , which is essentially the value of imperfect information on Weather Condition .

  6. Stochastic programming - Wikipedia

    en.wikipedia.org/wiki/Stochastic_programming

    The goal of stochastic programming is to find a decision which both optimizes some criteria chosen by the decision maker, and appropriately accounts for the uncertainty of the problem parameters. Because many real-world decisions involve uncertainty, stochastic programming has found applications in a broad range of areas ranging from finance to ...

  7. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    Statistical models are often used even when the data-generating process being modeled is deterministic. For instance, coin tossing is, in principle, a deterministic process; yet it is commonly modeled as stochastic (via a Bernoulli process). Choosing an appropriate statistical model to represent a given data-generating process is sometimes ...

  8. Stochastic control - Wikipedia

    en.wikipedia.org/wiki/Stochastic_control

    In a discrete-time context, the decision-maker observes the state variable, possibly with observational noise, in each time period. The objective may be to optimize the sum of expected values of a nonlinear (possibly quadratic) objective function over all the time periods from the present to the final period of concern, or to optimize the value of the objective function as of the final period ...

  9. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [1]Realizations of these random variables are generated and inserted into a model of the system.