Search results
Results from the WOW.Com Content Network
The decision-maker is usually better off (definitely no worse off, on average) to move from scenario 3 to scenario 2 through the acquisition of new information. The most they should be willing to pay for such move is called the value of information on Weather Forecast , which is essentially the value of imperfect information on Weather Condition .
One of the popular examples in computer science is the mathematical models of various machines, an example is the deterministic finite automaton (DFA) which is defined as an abstract mathematical concept, but due to the deterministic nature of a DFA, it is implementable in hardware and software for solving various specific problems. For example ...
Statistical models are often used even when the data-generating process being modeled is deterministic. For instance, coin tossing is, in principle, a deterministic process; yet it is commonly modeled as stochastic (via a Bernoulli process). Choosing an appropriate statistical model to represent a given data-generating process is sometimes ...
Probabilistic planning can be solved with iterative methods such as value iteration and policy iteration, when the state space is sufficiently small. With partial observability, probabilistic planning is similarly solved with iterative methods, but using a representation of the value functions defined for the space of beliefs instead of states.
Non-probabilistic (deterministic) decision-making by the individual violates random utility theory: under a random utility model, utility estimates become infinite. There is one fundamental weakness of all limited dependent variable models such as logit and probit models: the means (true positions) and variances on the latent scale are ...
Probability theory or probability calculus is the branch of mathematics concerned with probability.Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms.
In principle, Monte Carlo methods can be used to solve any problem having a probabilistic interpretation. By the law of large numbers, integrals described by the expected value of some random variable can be approximated by taking the empirical mean (a.k.a. the 'sample mean') of independent samples of the variable.
In a discrete-time context, the decision-maker observes the state variable, possibly with observational noise, in each time period. The objective may be to optimize the sum of expected values of a nonlinear (possibly quadratic) objective function over all the time periods from the present to the final period of concern, or to optimize the value of the objective function as of the final period ...