Search results
Results from the WOW.Com Content Network
There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since.
The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.
KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.
A Clinical Data Repository (CDR) or Clinical Data Warehouse (CDW) is a real time database that consolidates data from a variety of clinical sources to present a unified view of a single patient. It is optimized to allow clinicians to retrieve data for a single patient rather than to identify a population of patients with common characteristics ...
The modern conception of data science as an independent discipline is sometimes attributed to William S. Cleveland. [23] In 2014, the American Statistical Association's Section on Statistical Learning and Data Mining changed its name to the Section on Statistical Learning and Data Science, reflecting the ascendant popularity of data science. [24]
Health care analytics is the health care analysis activities that can be undertaken as a result of data collected from four areas within healthcare: (1) claims and cost data, (2) pharmaceutical and research and development (R&D) data, (3) clinical data (such as collected from electronic medical records (EHRs)), and (4) patient behaviors and preferences data (e.g. patient satisfaction or retail ...
Data analysis is an indispensable part of all applied research and problem solving in industry. The most fundamental data analysis approaches are visualization (histograms, scatter plots, surface plots, tree maps, parallel coordinate plots, etc.), statistics (hypothesis test, regression, PCA, etc.), data mining (association mining, etc.), and ...
Mining Schema: a list of all fields used in the model. This can be a subset of the fields as defined in the data dictionary. It contains specific information about each field, such as: Name (attribute name): must refer to a field in the data dictionary; Usage type (attribute usageType): defines the way a field is to be used in the model.