enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...

  3. File:Nyquist example.svg - Wikipedia

    en.wikipedia.org/wiki/File:Nyquist_example.svg

    The Nyquist Plot for a sample function () = + + that can be converted to frequency by replacing with (imaginary frequency) and . Created using Python and matplotlib. Created using Python and matplotlib.

  4. Nyquist frequency - Wikipedia

    en.wikipedia.org/wiki/Nyquist_frequency

    Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.

  5. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The following Python code can also be used to calculate and plot the root locus of the closed-loop transfer function using the Python Control Systems Library [14] and Matplotlib [15]. import control as ct import matplotlib.pyplot as plt # Define the transfer function sys = ct .

  6. Johnson–Nyquist noise - Wikipedia

    en.wikipedia.org/wiki/Johnson–Nyquist_noise

    Figure 2. Johnson–Nyquist noise has a nearly a constant 4 k B T R power spectral density per unit of frequency, but does decay to zero due to quantum effects at high frequencies (terahertz for room temperature). This plot's horizontal axis uses a log scale such that every vertical line corresponds to a power of ten of frequency in hertz.

  7. Hall circles - Wikipedia

    en.wikipedia.org/wiki/Hall_circles

    Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.

  8. Nyquist rate - Wikipedia

    en.wikipedia.org/wiki/Nyquist_rate

    Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal

  9. Nyquist ISI criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_ISI_criterion

    To derive the criterion, we first express the received signal in terms of the transmitted symbol and the channel response. Let the function h(t) be the channel impulse response, x[n] the symbols to be sent, with a symbol period of T s; the received signal y(t) will be in the form (where noise has been ignored for simplicity):