enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    One sees the solution is z = −1, y = 3, and x = 2. So there is a unique solution to the original system of equations. Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes ...

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.

  4. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  5. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    One may then solve for ⁡ by inverting or solving the linear equations. To get X {\displaystyle X} , one must just reshape vec ⁡ ( X ) {\displaystyle \operatorname {vec} (X)} appropriately. Moreover, if A {\displaystyle A} is stable (in the sense of Schur stability , i.e., having eigenvalues with magnitude less than 1), the solution X ...

  6. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.

  7. Preconditioner - Wikipedia

    en.wikipedia.org/wiki/Preconditioner

    In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem.

  8. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  9. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]