enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    Congruence (geometry) Relationship between two figures of the same shape and size, or mirroring each other. The two triangles on the left are congruent. The third is similar to them. The last triangle is neither congruent nor similar to any of the others. Congruence permits alteration of some properties, such as location and orientation, but ...

  3. Corresponding sides and corresponding angles - Wikipedia

    en.wikipedia.org/wiki/Corresponding_sides_and...

    In geometry, the tests for congruence and similarity involve comparing corresponding sides and corresponding angles of polygons. In these tests, each side and each angle in one polygon is paired with a side or angle in the second polygon, taking care to preserve the order of adjacency. [1] For example, if one polygon has sequential sides a, b ...

  4. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are ...

  5. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    By the Wallace–Bolyai–Gerwien theorem, a square can be cut into parts and rearranged into a triangle of equal area. In geometry, the Wallace–Bolyai–Gerwien theorem, [1] named after William Wallace, Farkas Bolyai and P. Gerwien, is a theorem related to dissections of polygons. It answers the question when one polygon can be formed from ...

  6. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Euclidean tilings are usually named after Cundy & Rollett’s notation. [1] This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types ...

  7. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    Congruence relation. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  8. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    Constructible polygon. In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are ...

  9. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had ...