Search results
Results from the WOW.Com Content Network
Thermal conductivity and resistivity. The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m −1 ·K −1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
The thermal boundary layer thickness is customarily defined as the point in the boundary layer, , where the temperature reaches 99% of the free stream value : such that = 0.99. at a position along the wall. In a real fluid, this quantity can be estimated by measuring the temperature profile at a position along the wall.
The R-value (in K ⋅ m 2/ W) is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive [2] flow of heat, in the context of construction. [3] R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the ...
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.
Thermal equation of state of solids. In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V. The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT ). It is used in calculating the heat transfer, typically by convection or phase transition between a ...