enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Co-dominance, where allelic products co-exist in the phenotype, is different from incomplete dominance, where the quantitative interaction of allele products produces an intermediate phenotype. For example, in co-dominance, a red homozygous flower and a white homozygous flower will produce offspring that have red and white spots.

  3. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    An example in dog coat genetics is the homozygosity with the allele "e e" on the Extension-locus making it impossible to produce any other pigment than pheomelanin. Although the allele "e" is a recessive allele on the extension-locus itself, the presence of two copies leverages the dominance of other coat colour genes.

  4. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Therefore no trait is purely Mendelian, but many traits are almost entirely Mendelian, including canonical examples, such as those listed below. Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes.

  5. Underdominance - Wikipedia

    en.wikipedia.org/wiki/Underdominance

    Compared to examples of overdominance in actual populations, underdominance is considered more unstable [3] [4] and may lead to the fixation of either allele. [ 1 ] [ 5 ] [ 6 ] An example of stable underdominance may occur in individuals who are heterozygotic for polymorphisms that would make them better suited for one of two niches . [ 7 ]

  6. Overdominance - Wikipedia

    en.wikipedia.org/wiki/Overdominance

    Overdominance is a phenomenon in genetics where the phenotype of the heterozygote lies outside the phenotypical range of both homozygous parents. Overdominance can also be described as heterozygote advantage regulated by a single genomic locus, wherein heterozygous individuals have a higher fitness than homozygous individuals.

  7. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Generally, the monohybrid cross is used to determine the dominance relationship between two alleles. The cross begins with the parental generation. One parent is homozygous for one allele, and the other parent is homozygous for the other allele. The offspring make up the first filial generation.

  8. Sickle cell trait - Wikipedia

    en.wikipedia.org/wiki/Sickle_cell_trait

    This is because the sickling happens only at low oxygen concentrations. With regards to the actual concentration of hemoglobin in the circulating cells, the alleles demonstrate co-dominance as both 'normal' and mutant forms co-exist in the bloodstream. Thus it is an ambiguous condition showing both incomplete dominance and co-dominance.

  9. X-linked dominant inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_dominant_inheritance

    A few scholars have suggested discontinuing the use of the terms dominant and recessive when referring to X-linked inheritance, stating that the highly variable penetrance of X-linked traits in females as a result of mechanisms such as skewed X-inactivation or somatic mosaicism is difficult to reconcile with standard definitions of dominance ...