enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genomic imprinting - Wikipedia

    en.wikipedia.org/wiki/Genomic_imprinting

    However, in 2004, experimental manipulation by Japanese researchers of a paternal methylation imprint controlling the Igf2 gene led to the birth of a mouse (named Kaguya) with two maternal sets of chromosomes, though it is not a true parthenogenone since cells from two different female mice were used. The researchers were able to succeed by ...

  3. Gametogenesis - Wikipedia

    en.wikipedia.org/wiki/Gametogenesis

    Premeiotic, post meiotic, pre mitotic, or postmitotic events are all possibilities if imprints are created during male and female gametogenesis. However, if only one of the daughter cells receives parental imprints following mitosis, this would result in two functionally different female gametes or two functionally different sperm cells.

  4. Germline development - Wikipedia

    en.wikipedia.org/wiki/Germline_development

    Mitotic germ stem cells, oogonia, divide by mitosis to produce primary oocytes committed to meiosis. Unlike sperm production, oocyte production is not continuous. These primary oocytes begin meiosis but pause in diplotene of meiosis I while in the embryo. All of the oogonia and many primary oocytes die before birth.

  5. Gene conversion - Wikipedia

    en.wikipedia.org/wiki/Gene_conversion

    Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.

  6. G1 phase - Wikipedia

    en.wikipedia.org/wiki/G1_phase

    After a vertebrate cell has been in the G 1 phase for about three hours, the cell enters a restriction point in which it is decided whether the cell will move forward with the G 1 phase or move into the dormant G 0 phase. [3] This point also separates two halves of the G 1 phase; the post-mitotic and pre-mitotic

  7. Cell division - Wikipedia

    en.wikipedia.org/wiki/Cell_division

    Mitotic cell division enables sexually reproducing organisms to develop from the one-celled zygote, which itself is produced by fusion of two gametes, each having been produced by meiotic cell division. [5] [6] After growth from the zygote to the adult, cell division by mitosis allows for continual construction and repair of the organism. [7]

  8. Maternal to zygotic transition - Wikipedia

    en.wikipedia.org/wiki/Maternal_to_zygotic_transition

    To begin transcription of zygotic genes, the embryo must first overcome the silencing that has been established. The cause of this silencing could be due to several factors: chromatin modifications leading to repression, lack of adequate transcription machinery, or lack of time in which significant transcription can occur due to the shortened cell cycles. [7]

  9. Germ cell - Wikipedia

    en.wikipedia.org/wiki/Germ_cell

    Multicellular eukaryotes are made of two fundamental cell types: germ and somatic cells. Germ cells produce gametes and are the only cells that can undergo meiosis as well as mitosis. Somatic cells are all the other cells that form the building blocks of the body and they only divide by mitosis. The lineage of germ cells is called the germline.