enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).

  3. Marcus' method - Wikipedia

    en.wikipedia.org/wiki/Marcus'_method

    Marcus's method is a structural analysis used in the design of reinforced concrete slabs.The method was developed by Henri Marcus and described in 1938 in Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. [1]

  4. Concrete slab - Wikipedia

    en.wikipedia.org/wiki/Concrete_slab

    A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel- reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving ( see below ).

  5. Limit state design - Wikipedia

    en.wikipedia.org/wiki/Limit_state_design

    The United States has been particularly slow to adopt limit state design (known as Load and Resistance Factor Design in the US). Design codes and standards are issued by diverse organizations, some of which have adopted limit state design, and others have not. The ACI 318 Building Code Requirements for Structural Concrete uses Limit State design.

  6. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    A Study of Combined Bending and Axial Load in Reinforced Concrete Members. University of Illinois, Engineering Experiment Station, Bulletin Series N. 399. Jennings, Alan (2004) Structures: From Theory to Practice. Taylor & Francis. ISBN 978-0-415-26843-1. Leonhardt, A. (1964). Vom Caementum zum Spannbeton, Band III (From Cement to Prestressed ...

  7. Eurocode 2: Design of concrete structures - Wikipedia

    en.wikipedia.org/wiki/Eurocode_2:_Design_of...

    Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.

  8. Arching or compressive membrane action in reinforced concrete ...

    en.wikipedia.org/wiki/Arching_or_Compressive...

    The derivation of the maximum arching moment of resistance of laterally restrained concrete bridge deck slabs utilised Rankin's [21] idealised elastic-plastic stress-strain criterion for concrete, valid for concrete cylinder strengths up to at least 70N/mm 2, which he had derived on the basis of Hognestad, Hanson and McHenry's [23] ultimate ...

  9. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Using the free body diagram in the right side of figure 3, and making a summation of moments about point x: = + = where w is the lateral deflection. According to Euler–Bernoulli beam theory , the deflection of a beam is related with its bending moment by: M = − E I d 2 w d x 2 . {\displaystyle M=-EI{\frac {d^{2}w}{dx^{2}}}.}