enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relationship between telomeres and longevity - Wikipedia

    en.wikipedia.org/wiki/Relationship_between...

    Extending telomeres can allow cells to divide more and increase the risk of uncontrolled cell growth and cancer development. [24] A study conducted by Johns Hopkins University challenged the idea that long telomeres prevent aging. Rather than protecting cells from aging, long telomeres help cells with age-related mutations last longer. [13]

  3. Telomere - Wikipedia

    en.wikipedia.org/wiki/Telomere

    Telomere shortening is associated with aging, mortality, and aging-related diseases in experimental animals. [ 8 ] [ 34 ] Although many factors can affect human lifespan, such as smoking, diet, and exercise, as persons approach the upper limit of human life expectancy , longer telomeres may be associated with lifespan.

  4. Evolution of ageing - Wikipedia

    en.wikipedia.org/wiki/Evolution_of_ageing

    New research has also shown that there is an association between telomere shortening and mitochondrial dysfunction. [33] Nevertheless, over-expression of telomerase increases the chances of cancer. If telomeres stay in repair, there is a greater chance of longevity, but there is also more cell division and a greater chance of mutation, which ...

  5. Cellular senescence - Wikipedia

    en.wikipedia.org/wiki/Cellular_senescence

    The successive shortening of the chromosomal telomeres with each cell cycle is also believed to limit the number of divisions of the cell, contributing to aging. After sufficient shortening, proteins responsible for maintaining telomere structure, such as TRF2, are displaced, resulting in the telomere being recognized as a site of a double ...

  6. Telomeres in the cell cycle - Wikipedia

    en.wikipedia.org/wiki/Telomeres_in_the_cell_cycle

    This problem makes eukaryotic cells unable to copy the last few bases on the 3' end of the template DNA strand, leading to chromosome—and, therefore, telomereshortening every S phase. [2] Measurements of telomere lengths across cell types at various ages suggest that this gradual chromosome shortening results in a gradual reduction in ...

  7. Alexey Olovnikov - Wikipedia

    en.wikipedia.org/wiki/Alexey_Olovnikov

    Alexey Matveyevich Olovnikov (Russian: Алексей Матвеевич Оловников; 10 October 1936 – 6 December 2022) was a Russian biologist.Among other things, in 1971, he was the first to recognize the problem of telomere shortening, to predict the existence of telomerase, and to suggest the telomere hypothesis of aging and the relationship of telomeres to cancer.

  8. Biological immortality - Wikipedia

    en.wikipedia.org/wiki/Biological_immortality

    Biological immortality (sometimes referred to as bio-indefinite mortality) is a state in which the rate of mortality from senescence (or aging) is stable or decreasing, thus decoupling it from chronological age. Various unicellular and multicellular species, including some vertebrates, achieve this state either throughout their existence or ...

  9. Aging brain - Wikipedia

    en.wikipedia.org/wiki/Aging_brain

    Oxidative stress can damage DNA replication and inhibit repair through many complex processes, including telomere shortening in DNA components. [25] Each time a somatic cell replicates, the telomeric DNA component shortens. As telomere length is partly inheritable, [25] there are individual differences in the age of onset of cognitive decline.