Search results
Results from the WOW.Com Content Network
The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral, and that the regular hexagon can be partitioned into six equilateral triangles.
If exactly one pair of opposite sides of the hexagon are parallel, then the conclusion of the theorem is that the "Pascal line" determined by the two points of intersection is parallel to the parallel sides of the hexagon. If two pairs of opposite sides are parallel, then all three pairs of opposite sides form pairs of parallel lines and there ...
Pascal's theorem states that if six arbitrary points are chosen on a conic section (i.e., ellipse, parabola or hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon.
These may be considered sides of a hexagon whose sixth side is the line at infinity, but there is no line at infinity in the affine plane. In two instances, a line from a (non-existent) vertex to the opposite vertex would be a line parallel to one of the five tangent lines. Brianchon's theorem stated only for the affine plane would therefore ...
That is, the points of intersection of the pairs of opposite sides of the hexagon ADEGBZ are collinear. Lemmas XV and XVII are that, if the point M is determined as the intersection of HK and BG, then the points A, M, and D are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon BEKHZG are collinear.
If a hexagon has an inscribed conic, then by Brianchon's theorem its principal diagonals are concurrent (as in the above image). Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side.
The vertices and edges on the interior of the hexagon are suppressed. There are five Bravais lattices in two dimensions, related to the parallelogon tessellations by their five symmetry variations. In geometry, a parallelogon is a polygon with parallel opposite sides (hence the name) that can tile a plane by translation (rotation is not ...
The full and short symbols for all 32 crystallographic point groups are given in crystallographic point groups page. Besides five cubic groups, there are two more non-crystallographic icosahedral groups (I and I h in Schoenflies notation) and two limit groups (K and K h in Schoenflies notation). The Hermann–Mauguin symbols were not designed ...