Search results
Results from the WOW.Com Content Network
In arithmetic and algebra, the eighth power of a number n is the result of multiplying eight instances of n together. So: n 8 = n × n × n × n × n × n × n × n.. Eighth powers are also formed by multiplying a number by its seventh power, or the fourth power of a number by itself.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
In the first step both numbers were divided by 10, which is a factor common to both 120 and 90. In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1.
These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,
6/8 may refer to: A fraction equivalent to 3 ⁄ 4 or 0.75. June 8 (month-day date notation) 6 August (day-month date notation) 6 8, a time signature used in Western musical notation; 6 shillings and 8 (old) pence in UK pre-decimal currency = 80d or 1 ⁄ 3 of a pound sterling
For univariate polynomials over the rational numbers, one may think that Euclid's algorithm is a convenient method for computing the GCD. However, it involves simplifying a large number of fractions of integers, and the resulting algorithm is not efficient.
which if we make the simplifying assumption that b = 0, is equal to + + () This polynomial is of degree six, but only of degree three in z 2, and so the corresponding equation is solvable. By trial we can determine which three roots are the correct ones, and hence find the solutions of the quartic.