Search results
Results from the WOW.Com Content Network
The universal law of radioactive decay, which describes the time until a given radioactive particle decays, is a real-life example of memorylessness. An often used (theoretical) example of memorylessness in queueing theory is the time a storekeeper must wait before the arrival of the next customer.
The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.
This guess is not improved by the added knowledge that one started with $10, then went up to $11, down to $10, up to $11, and then to $12. The fact that the guess is not improved by the knowledge of earlier tosses showcases the Markov property, the memoryless property of a stochastic process. [1]
The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution. [1]: 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
Likewise, the cumulative distribution of the residual time is = [()]. For large , the distribution is independent of , making it a stationary distribution. An interesting fact is that the limiting distribution of forward recurrence time (or residual time) has the same form as the limiting distribution of the backward recurrence time (or age).
Consider a continuous-time Markov process with m + 1 states, where m ≥ 1, such that the states 1,...,m are transient states and state 0 is an absorbing state. Further, let the process have an initial probability of starting in any of the m + 1 phases given by the probability vector (α 0,α) where α 0 is a scalar and α is a 1 × m vector.
Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.