Search results
Results from the WOW.Com Content Network
Ammonium phosphate refers to three different chemical compounds, all of which are formed by the reaction of ammonia with phosphoric acid and have the general formula [NH 4] x [H 3−x PO 4], where 1 ≤ x ≤ 3: Ammonium dihydrogenphosphate, [NH 4][H 2 PO 4] Diammonium phosphate, [NH 4] 2 [HPO 4] Ammonium phosphate, [NH 4] 3 [PO 4
Diammonium phosphate (DAP; IUPAC name diammonium hydrogen phosphate; chemical formula (NH 4) 2 (HPO 4)) is one of a series of water-soluble ammonium phosphate salts that can be produced when ammonia reacts with phosphoric acid. Solid diammonium phosphate shows a dissociation pressure of ammonia as given by the following expression and equation: [2]
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H 3 PO 4. The phosphate or orthophosphate ion [PO 4] 3− is derived from phosphoric acid by the removal of three protons H +.
In aqueous solution, ammonia deprotonates a small fraction of the water to give ammonium and hydroxide according to the following equilibrium: . NH 3 + H 2 O ⇌ NH + 4 + OH −.. In a 1 M ammonia solution, about 0.42% of the ammonia is converted to ammonium, equivalent to pH = 11.63 because [NH +
The general formula of a phosphoric acid is H n−2x+2 P n O 3n−x+1, where n is the number of phosphorus atoms and x is the number of fundamental cycles in the molecule's structure; that is, the minimum number of bonds that would have to be broken to eliminate all cycles.
A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs.
The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1.