Search results
Results from the WOW.Com Content Network
If a pop operation on the stack causes the stack pointer to move past the origin of the stack, a stack underflow occurs. If a push operation causes the stack pointer to increment or decrement beyond the maximum extent of the stack, a stack overflow occurs. Some environments that rely heavily on stacks may provide additional operations, for example:
In each step, it chooses a transition by indexing a table by input symbol, current state, and the symbol at the top of the stack. A pushdown automaton can also manipulate the stack, as part of performing a transition. The manipulation can be to push a particular symbol to the top of the stack, or to pop off the top of the stack.
A push operation decrements the pointer and copies the data to the stack; a pop operation copies data from the stack and then increments the pointer. Each procedure called in the program stores procedure return information (in yellow) and local data (in other colors) by pushing them onto the stack.
(In the examples that follow, a, b, and c are (direct or calculated) addresses referring to memory cells, while reg1 and so on refer to machine registers.) C = A+B 0-operand (zero-address machines), so called stack machines: All arithmetic operations take place using the top one or two positions on the stack: [9] push a, push b, add, pop c.
It is automatically updated during PUSH and POP operations. BP (Base Pointer): Points to the top of the call stack. It is primarily used to access function parameters and local variables within the call stack. SI (Source Index): Used as a pointer to the source in string and memory array operations.
For example, a stack may have operations push(x) and pop(), that operate on the only existing stack. ADT definitions in this style can be easily rewritten to admit multiple coexisting instances of the ADT, by adding an explicit instance parameter (like S in the stack example below) to every operation that uses or modifies the implicit instance.
Commonly provided are dup, to duplicate the element atop the stack, exch (or swap), to exchange elements atop the stack (the first becomes second and the second becomes first), roll, to cyclically permute elements in the stack or on part of the stack, pop (or drop), to discard the element atop the stack (push is implicit), and others. These ...
Typically push and pop are translated into multiple micro-ops, to separately add/subtract the stack pointer, and perform the load/store in memory. [3] Newer processors contain a dedicated stack engine to optimize stack operations. Pentium M was the first x86 processor to introduce a stack engine.