Search results
Results from the WOW.Com Content Network
The stability of helium-4 is the reason that hydrogen is converted to helium-4, and not deuterium (hydrogen-2) or helium-3 or other heavier elements during fusion reactions in the Sun. It is also partly responsible for the alpha particle being by far the most common type of baryonic particle to be ejected from an atomic nucleus; in other words ...
Almost all neutrons that fused instead of decaying ended up combined into helium-4, due to the fact that helium-4 has the highest binding energy per nucleon among light elements. This predicts that about 8% of all atoms should be helium-4, leading to a mass fraction of helium-4 of about 25%, which is in line with observations.
According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. [1] After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions ...
A graphical representation of the semi-empirical binding energy formula. The binding energy per nucleon in MeV (highest numbers in yellow, in excess of 8.5 MeV per nucleon) is plotted for various nuclides as a function of Z, the atomic number (y-axis), vs. N, the number of neutrons (x-axis). The highest numbers are seen for Z = 26 (iron).
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus ...
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
In a nuclear reaction, the total (relativistic) energy is conserved. The "missing" rest mass must therefore reappear as kinetic energy released in the reaction; its source is the nuclear binding energy. Using Einstein's mass-energy equivalence formula E = mc 2, the amount of energy released can be determined.
Binding energy curve (average binding energy per nucleon in MeV against number of nucleons in nucleus) for a number of relatively common (abundant) isotopes (not chosen systematically; almost anything with an occurence of over .2 was chosen though a few exceptions are in there, such as U235).