Search results
Results from the WOW.Com Content Network
Multiple empirical formulae exist that relate the loss factor to the load factor (Dickert et al. in 2009 listed nine [5]). Similarly, the ratio between the average and the peak current is called form coefficient k [ 6 ] or peak responsibility factor k , [ 7 ] its typical value is between 0.2 to 0.8 for distribution networks and 0.8 to 0.95 for ...
where is the time average power loss per unit volume in mW per cubic centimeter, is frequency in kilohertz, and is the peak magnetic flux density; , , and , called the Steinmetz coefficients, are material parameters generally found empirically from the material's B-H hysteresis curve by curve fitting. In typical magnetic materials, the ...
In an electrical or electronic circuit or power system part of the energy in play is dissipated by unwanted effects, including energy lost by unwanted heating of resistive components (electricity is also used for the intention of heating, which is not a loss), the effect of parasitic elements (resistance, capacitance, and inductance), skin effect, losses in the windings and cores of ...
Loss of load in an electrical grid is a term used to describe the situation when the available generation capacity is less than the system load. [1] Multiple probabilistic reliability indices for the generation systems are using loss of load in their definitions, with the more popular [2] being Loss of Load Probability (LOLP) that characterizes a probability of a loss of load occurring within ...
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...
where I is the current flowing in the conductor and R is the resistance of the conductor. With I in amperes and R in ohms, the calculated power loss is given in watts. Joule heating has a coefficient of performance of 1.0, meaning that every 1 watt of electrical power is converted to 1 Joule of heat. Therefore, the energy lost due to copper ...
Efficiency of power plants, world total, 2008. Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges ...
In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy (e.g. heat). [1] It can be parameterized in terms of either the loss angle δ or the corresponding loss tangent tan( δ ) .