Search results
Results from the WOW.Com Content Network
Astrocytes (green) in the context of neurons (red) in a mouse cortex cell culture 23-week-old fetal brain culture human astrocyte Astrocytes (red-yellow) among neurons (green) in the living cerebral cortex. Astrocytes are a sub-type of glial cells in the central nervous system. They are also known as astrocytic glial cells.
Astrocytes are known to facilitate changes in blood flow [7] [8] and have long been thought to play a role in waste removal in the brain. [9] Astrocytes express water channels called aquaporins. [10] Until 2000, no physiological function had been identified that explained their presence in the mammalian CNS.
Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialized ependymal cells in the choroid plexus of the ventricles of the brain, and absorbed in the arachnoid granulations. In humans, there is about 125 mL of CSF at any one time ...
The cerebrospinal fluid (CSF) within the skull and spine provides further protection and also buoyancy, and is found in the subarachnoid space between the pia mater and the arachnoid mater. [citation needed] The CSF that is produced in the ventricular system is also necessary for chemical stability, and the provision of nutrients needed by the ...
The choroid plexus regulates the production and composition of cerebrospinal fluid (CSF), that provides the protective buoyancy for the brain. [2] [10] CSF acts as a medium for the glymphatic filtration system that facilitates the removal of metabolic waste from the brain, and the exchange of biomolecules and xenobiotics into and out of the brain.
The astrocytes of the glia limitans are responsible for separating the brain into two primary compartments. The first compartment is the immune-privileged brain and spinal cord parenchyma. This compartment contains multiple immunosuppressive cell surface proteins such as CD200 and CD95L and it allows for the release of anti-inflammatory factors.
Glial fibrillary acidic protein (GFAP) is a protein that is encoded by the GFAP gene in humans. [5] It is a type III intermediate filament (IF) protein that is expressed by numerous cell types of the central nervous system (CNS), including astrocytes [6] and ependymal cells during development. [7]
More specifically, the median eminence allows for the transport of neurohormones between the CSF and the peripheral blood supply. [36] The major cell type that makes up the median eminence are specialized ependymal cells known as tanycytes. These contribute to the organ's ability to selectively allow macromolecules to pass from the central to ...