enow.com Web Search

Search results

  1. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics establishes the concept of entropy as a physical property of a thermodynamic system. It predicts whether processes are forbidden despite obeying the requirement of conservation of energy as expressed in the first law of thermodynamics and provides necessary criteria for spontaneous processes. For example, the ...

  2. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships ...

  3. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The law was actually the last of the laws to be formulated. First law of thermodynamics. d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where. d U {\displaystyle dU} is the infinitesimal increase in internal energy of the system, δ Q {\displaystyle \delta Q} is the infinitesimal heat flow into the system, and.

  4. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantities ...

  5. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    A measure of disorder in the universe or of the unavailability of the energy in a system to do work. [7] Entropy and disorder also have associations with equilibrium. [8] Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect ...

  6. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not. Intuitively, a process is reversible if there is no dissipation. For example, Joule expansion is irreversible because initially the system is not uniform. Initially, there is part of the system with gas in it, and part of the system ...

  7. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  8. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    Principle of minimum energy. The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may ...