enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  3. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    In quantum mechanics, the principal quantum number (symbolized n) is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from one) making it a discrete variable. Apart from the principal quantum number, the other quantum numbers for bound electrons are the azimuthal ...

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈɔːrbɪtəl /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

  5. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    In physics and chemistry, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = ⁠ 1 2 ⁠ for all electrons.

  6. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a ...

  7. Quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Quantum_chemistry

    Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. [1]

  8. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later ...

  9. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    In quantum mechanics, the azimuthal quantum number ℓ is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron (the others being ...