Search results
Results from the WOW.Com Content Network
The satisfiability problem becomes more difficult if both "for all" and "there exists" quantifiers are allowed to bind the Boolean variables. An example of such an expression would be ∀ x ∀ y ∃ z ( x ∨ y ∨ z ) ∧ (¬ x ∨ ¬ y ∨ ¬ z ) ; it is valid, since for all values of x and y , an appropriate value of z can be found, viz. z ...
Circuit satisfiability problem; Conjunctive Boolean query [3]: SR31 Cyclic ordering [36] Exact cover problem. Remains NP-complete for 3-sets. Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem ...
The Boolean satisfiability (or SAT) problem can be stated formally as: given a Boolean expression with = {, …,} variables, finding an assignment of the variables such that () is true. It is seen as the canonical NP-complete problem.
The Cook–Levin theorem states that the Boolean satisfiability problem is NP-complete, thus establishing that such problems do exist. In 1972, Richard Karp proved that several other problems were also NP-complete (see Karp's 21 NP-complete problems ); thus, there is a class of NP-complete problems (besides the Boolean satisfiability problem).
The first natural problem proven to be NP-complete was the Boolean satisfiability problem, also known as SAT. As noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains technical details about Turing machines as they relate to the definition of NP.
A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...
In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula.
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.